Comparative calcium metabolism

Linda Böswald
Chair of Animal Nutrition and Dietetics
Ludwig-Maximilians-Universität München, Germany
Residency Class, 17th September 2019, Turin, Italy

Calcium - a very short introduction

- Functions: skeleton, muscle contraction, nerve conduction, cellular signalling, blood clotting, ...
- Absorption
 - Active
 - Passive
- Sources in animal feed: dairy products, limestone, bones, eggshells, Ca-salts, plants like alfalfa, herbs, ...
- Ca homeostasis closely linked to P status

Calcium - homeostatic pathways
Comparative

Fish

- Skeleton and scales for Ca deposition
- Acellular bone - limited part in Ca homeostasis
- Demineralisation only in prolonged, extreme Ca deficiency

- Regulation PTH-independent
- Stanniocalcin = hypocalcaemic hormone → prevents Ca influx from water into gill cells

Fleming 1967; Flik & Verbost 1993; Dato-Cajegas & Yakupitiyage 1996; NRC 1993

Fish

Calcium Metabolism of Teleosts

<table>
<thead>
<tr>
<th>Initial Calcium (mg/L)</th>
<th>Pooled Calcium (mg/L)</th>
<th>Calcium Secreted</th>
<th>Calcium Feed</th>
<th>Calcium Taken from Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>880</td>
<td>491.1</td>
<td>35.7</td>
<td>35.3</td>
<td>186.2</td>
</tr>
<tr>
<td>580</td>
<td>148.7</td>
<td>34.3</td>
<td>36.7</td>
<td>26.9</td>
</tr>
<tr>
<td>380</td>
<td>108.3</td>
<td>35.3</td>
<td>36.7</td>
<td>26.9</td>
</tr>
</tbody>
</table>
Fish

- Intestines: passive transport of Ca
- Ca uptake from environment (water) possible in many fish via gills, oral epithelium and possibly fins
- Water hardness
 - Seawater = high Ca content - no dietary Ca necessary in many species
 - Freshwater = low Ca content - dietary Ca requirement + osmoregulation
 - Ca already in solubil form

Reptiles

- High Ca requirement
 - Skeleton
 - In tortoises and turtles: carapace development - livelong growth!
 - Females: egg shell production

- Vitamin D-dependent Ca absorption
 - UV irradiation for vitamin D synthesis
 - Sunlight / UV-lamps, wavelength of irradiation 280/290-320nm ("UV-B")
 - Exposure time - self-regulated in panther chameleons
 - Cutaneous synthesis upregulated during low Ca, low vit D diet in veiled chameleons
 - Some lizard species may adapt UV sensitivity of their skin

- Renal excretion of Ca: excess Ca intake may result in renal calcinosis
- Ca deficiency and/or vit D deficiency: metabolic bone disease

MBD in chameleons without Ca supplementation
 - Thin corticalis
 - Bone mineralised osteoid
 - Hacking trabeculae

Poultry - laying hens

- Eggshell production = high Ca demand
- Strong genetic influence in layer lines
 - More efficient Ca utilisation in high performance lines
 - “general” upregulation of intestinal Ca transport - but not sufficient in low Ca diets
 - Age effect, possibly vit D related
- "Calcium appetite"
 - Offering Ca source separately from basal diet possible
- Recommended dietary Ca/P ratio ~ 5/1

Ref: Bar & Hurwitz 1987; Bues et al. 2019; Lieboldt et al. 2018; Packard & Packard 1984; Taher et al. 1984; Wilkinson et al. 2011

Poultry - laying hens

- Medullary bone as Ca pool → acute mobilisation of Ca for egg shells
 - Active bone resorption by osteoclasts
- Rhythm of Ca homeostasis
 - Blood Ca²⁺ at minimum levels ~16h before oviposition
 - Circadian changes of medullary bone Ca content
 - Changes of medullary bone architecture

Dogs & cats

- Ca digestibility highly dependent on faecal DM excretion
 - Not regulated by Ca intake level / requirement - linear function of intake
 - Basically independent of diet / Ca source
 - Regulation of low Ca diet → bone resorption as Ca reservoir

Ref: Stillwell et al. 2016; Stange et al. 2017, 2019; Hack et al. 2015; Schmitt et al. 2018
Dogs & cats - ancestors

- Evolutionary adaptation to prey feeding

Puppy with Ca deficiency
Kölle et al. 2006

Kitten fed meat only
Böswald unpublished

Osteopenia (Ca, P, vit D)
Dodd et al. 2019

Dogs & cats

- Susceptible to Ca deficiency
- During growth and in adult maintenance
- Increased markers of bone resorption, less bone accretion

Puppy with Ca deficiency
Kölle et al. 2006

Kitten fed meat only
Böswald unpublished

Osteopenia (Ca, P, vit D)
Dodd et al. 2019

Becker et al. 2012; Kölle et al. 2006; Liesegang et al. 1999; Schmitt et al. 2018

Omnivores

- Regulation of intestinal Ca absorption
 - Passive paracellular absorption
 - Active transcellular absorption - stimulated by vit D
- Low Ca intake - upregulation of aD(Ca)
- High fat diets decrease aD(Ca) in rodents

Favus et al. 1988; Frommel et al. 2014; Schröder & Breves 2007; Song et al. 2003
Hindgut fermenters

- High Ca digestibility
 - Absorption in the small intestine
 - Renal excretion of excess Ca
 - Bypass the large intestine so that P is available for microbial fermentation

- Renal excretion directly influenced by Ca intake ⇒ constant plasma Ca

Schryver et al. 1970; Cheeke & Amberg 1973; Claus & Hummel 2008; Böswald et al. 2018

Cattle

- Absorption begins in the forestomaches
 - High ruminal Ca absorption ⇒ less intestinal Ca absorption and vice versa
 - Potential link to transepithelial SCFA-transport

- Passive absorption dominates in maintenance - active absorption in times of higher demand

Cattle

- **Ca digestibility**
 - There are reports of increasing ΔD(Ca) with increasing Ca demand
 - but not as an immediate response
 - only after depletion of body storage (skeleton!)
 - Phytate and oxalate do not decrease ΔD(Ca) - microbial degradation of complexes in the foregut

- **Renal excretion relatively low and constant, independent of vit D, FGF-23**

Buda & Cole 1956, Braithwaite 1974; Schröder & Breves 2007; Liesegang et al. 2008

Cattle

- **Skeletal pool used during high Ca demand – loss of bone**
 - Risk of milk fever at onset of lactation
 - Regulation disorder, relative Ca deficiency
 - Older animals are less able to replete the stores - risk higher > 3. lact.
 - Amount of vit D receptors ↓
 - 1 ½ of vit D ↓ due to higher degradation?!?
 - Less resorptive surface on bone
 - PTH receptor insensitivity
 - Pre-calving high Ca diets
 - High P diets also increase risk - increase of vit D degradation
 - Low protein diets - ΔD(Ca) ↓, vit D activation ↓
 - DCAD

Braithwaite 1974, DeGaris & Lene 2008; Finnerich et al. 2019; Wilkens 2019

Small ruminants

Sheep = grazers

- Low dietary Ca alone does not stimulate Ca absorption
- Low Ca + calcitriol \rightarrow ΔD(Ca) ↓
- Absolute Ca def. during late gestation (= cattle)

Hofmann 1999a, den Otter et al. 2003; Liesegang et al. 2007; Schröder & Breves 2007; Wilkens et al. 2011; 2012

Goats = intermediate feeders

- Adaptation to low Ca supply
- Increased intestinal Ca absorption
- esp. in jejunum
- Vit D mediated
- Higher bone turnover rate than sheep
Calcium - homeostatic pathways

References I/III

References II/III

References III/III